Structured Feedback for Preference Elicitation in Complex Domains

Stefano Teso
University of Trento
Trento, Italy
teso @disi.unitn.it

Abstract

Preference elicitation is concerned with inferring a
latent utility function from user feedback. Typi-
cal elicitation approaches iteratively query the user
about (supposedly informative) pairs of candidate
configurations; the collected pairwise preference
constraints are used to improve the utility estimate.
The ongoing transition from flat to structured con-
figuration spaces is opening promising opportuni-
ties for the design of more general and effective
feedback mechanisms. In this position paper, we
outline a framework, based on a general notion of
structured constraint, encompassing existing and
novel formulations.

1 Introduction

Preference elicitation [Goldsmith and Junker, 2009] is a key
component of personalized recommendation and decision
support systems. Queries are presented to the user according
to a certain query selection strategy [Chajewska et al., 2000],
and the feedback received is used to refine the current ap-
proximation of the user utility. The process is repeated until
the user is satisfied with the recommendation. Classic prefer-
ence elicitation methods have been concerned with pairwise
preference queries: the learner proposes two candidate con-
figurations to the user, who replies by marking one configu-
ration as more desirable than the other. However, when con-
figurations are structures, i.e. configurable entities made of
components and relationships between them, more complex
feedback mechanisms become viable.

In this position paper we untangle different kinds of feed-
back strategies for structured configurations and position
them within a systematic elicitation framework, encompass-
ing preference elicitation from pairwise constraints [Cha-
jewska er al., 2000], coactive learning [Shivaswamy and
Joachims, 2015], conversational (or example-critique) rec-
ommender systems [Chen and Pu, 2012], as well as construc-
tive methods [Teso et al., 2016]. In all of these, user feedback
can be cast in terms of constraints that affect different aspects
of the learning process. For instance, pairwise preferences
constrain (or bias) the space of parameters. Other kinds of
user-provided constraints can be devised, affecting instead the
space of configurations (either at the attribute or feature level)

Paolo Dragone
University of Trento
Trento, Italy
paolo.dragone @unitn.it

Andrea Passerini
University of Trento
Trento, Italy
passerini @disi.unitn.it

and the space of utility functions. We present different classes
of constraints, which provide complementary information to
the learner, and (crucially) can not always be converted into
one another.

In order to ground the discussion, we next present three
prototypical constructive scenarios, where the goal is to con-
struct potentially novel items, and the set of candidates is
defined by constraints rather than enumerated explicitly. In
these examples, user feedback does not fall in the pairwise
preference schema, but can be naturally interpreted as (com-
binations of) diverse constraints.

Example 1: commenting recipes. A robotic bartender is
tasked with generating cocktail and food recipes tailored to-
ward the tastes of a specific user. Configurations amount to
proportions of specific ingredients. The interaction model
involves the robot proposing a candidate food/drink to the
user, who comments about aspects that she does not like: one
or more ingredients may be harmful (because of food aller-
gies or intolerances), the dish may be lacking in some respect
(not sweet enough or too spicy) or may possess clashing as-
pects (simultaneously sweet and salty). In this setting, the
feedback provides constraints about individual attributes and
compound features alike.

Example 2: annotating sketches. An automated design
support system constructs optimized furniture layouts for the
living place of a user. A layout can be viewed as a hybrid
structure, including categorical and numerical attributes and
relations between them. Upon seeing a sketch (or rendering)
of a proposal, the user replies by annotating portions of the
sketch with critiques such as: “the TV set is too close to the
kitchen door”, or “the bathroom is too far away from the bed-
rooms”. Here the feedback is not about the whole configura-
tion, but rather about sub-structures and their relations.

Example 3: understanding ergonomics. An on-line ser-
vice sells personalized armchairs manufactured with 3D
printing technology, and leverages a recommender system
for probing the client’s preferences. Upon viewing a newly
constructed item, the user submits a full-fledged review to
the website. The review includes comments on very defi-
nite aspects (colors and materials) to more volatile ones (aes-

thetics and ergonomics). Crucially, the relation between at-
tributes/features and the latter is difficult to define even to do-
main experts, let alone encoded into a mathematical model.

2 Learning with Structured Feedback

Following common practices, we distinguish between three
different spaces. A structured configuration x is composed
of categorical and numerical attributes; the space of feasible
configurations X is implicitly or explicitly defined by con-
straints. The learner has access to some feature representation
¢(x) € ®; individual features may be Booleans, integers or
reals. Utility functions, taken from a set U/, establish a total
or partial order over the feature space. Given an (unobserved)
utility function ©* € U encoding the true user preferences,
the goal of the learner is to find a function v € U incurring
small loss.

We assume the learning procedure to be laid out as in Al-
gorithm 1; many existing methods can be readily related to
this template. At each iteration, a high utility configuration
x is chosen in step 4 and presented to the user. This step is
natively constructive: when & is not ground, the maximiza-
tion is free to discover entirely novel configurations. Feed-
back collection takes place in step 5, where the user reply is
converted to a set of constraints which are added to the cur-
rent set C := C, UC, U Cy. In step 6, the utility estimate u
is updated accordingly. Optionally, the feature function ¢ is
modified in step 7 by augmenting or pruning the feature set.

Utility constraints C,, serve to favor certain utility func-
tions, for instance the ones consistent with the collected pair-
wise rankings, in step 6. Our formulation additionally al-
lows C to also have significantly diverse effects. Attribute
constraints (as in Example 1) and sub-structure constraints
(Examples 1 and 2), collectively referred to as C,, both af-
fect the feasible configuration space, for instance by tying the
value of sets of attributes. Finally, feature transformations Cg
(Example 3) guide the update of the feature representation in
step 7.

The complexity of the algorithm depends on the choices
made on the features ¢(x), utility u, loss function and the
constraints C. If all these components depend linearly on z,
steps 4 and 6 can be tackled in terms of either Mixed Inte-
ger Linear Programming (MILP) [Wolsey and Nembhauser,
2014] or Optimization Modulo Theories (OMT) [Sebastiani
and Tomasi, 2015].

Clearly, the choice of constraint types is domain-
dependent, and deeply influences the complexity of the two
optimization problems. As an example, linear constraints
over non-convex features amount to non-convex optimiza-
tion over the attributes in step 4, rendering exact optimiza-
tion problematic. The effect is particularly critical for feature
transformations (step 7), which imply a much larger search
space, and should be used sparingly. We observe however
that offline MILP solvers are often fast enough for preference
elicitation tasks [Teso et al., 2016], and that incremental op-
timization methods (e.g. incremental OMT [Sebastiani and
Tomasi, 2015]) are perfectly suited for leveraging the itera-
tive nature of the elicitation process.

Algorithm 1 Template algorithm for preference elicitation:
U (resp. X) is the feasible space of utility functions (resp.
configurations)
1: procedure ELICIT(U, X, ¢)
2: Initialize u € U,C <~
3 fort=1,...,Tdo
4 x < argmax, ¢y u(@(z)) st Ca
5 C < C U QUERY(z)
6: u < argmin, o, loss(u(¢(-)),Cu)
7.
8
9:

¢ < TRANSFORM(¢,Cy)
end for
end procedure

3 Related Work

Coactive learning (CL) [Shivaswamy and Joachims, 2015;
Raman et al., 2013] has been proposed for preference elicita-
tion in structured domains. In CL candidate structures pro-
vided by a solver are interactively improved by a domain
expert; user modifications are interpreted as ranking con-
straints. Notably, CL has been extended with limited support
for modelling the cognitive cost of queries [Goetschalckx et
al., 2015]. Given its reliance on ranking constraints, coac-
tive learning naturally falls within our structured constraint
framework.

Another group of related approaches is critiquing-based
(or conversational) recommender systems [Viappiani et al.,
2006; Chen and Pu, 2012]. In this setting the feedback takes
the form of critiques about specific attributes of the proposed
configurations. Collected feedback is used to restrict the set
of candidate items, in a similar manner to constructive pref-
erence learning; current approaches however expect the item
pool to be defined extensively.

Conditional preference networks [Boutilier et al., 2004]
are a related combinatorial model for expressing preference
relations. Most works in this area however do not consider
the problem of online CP-network learning. The few that
do (e.g. [Koriche and Zanuttini, 2010; Guerin et al., 2013]),
avoid the issue of query selection methods, and do not aim
at minimizing the number of queries posed to the user. As
such, CP-networks are not suitable for interactive preference
elicitation.

From an interactive optimization viewpoint, our task is re-
lated to the problem of constraint acquisition in constraint
solving. In passive acquisition [Bessiere er al., 2005; Lallouet
et al., 2010; Beldiceanu and Simonis, 2012], the user pro-
vides an initial set of positive and (possibly) negative config-
urations from which constraints are mined. Active constraint
acquisition methods, on the other hand, iteratively query the
user by asking to classify full [Bessiere ef al., 2007] or par-
tial [Bessiere et al., 2013] assignments as positive or negative
examples, or to provide constraints violated by a negative ex-
ample [Freuder and Wallace, 1998].

Acknowledgments ST was supported by the Caritro Foun-
dation through project E62115000530007.

References

[Beldiceanu and Simonis, 2012] N. Beldiceanu and H. Si-
monis. A model seeker: Extracting global constraint mod-
els from positive examples. In CP’12, pages 141-157,
2012.

[Bessiere et al., 2005] C. Bessiere, R. Coletta, F. Koriche,
and B. O’Sullivan. A sat-based version space algorithm for
acquiring constraint satisfaction problems. In Proceedings
of ECML, pages 23-34, 2005.

[Bessiere et al., 2007] C. Bessiere, R. Coletta,
B. O’Sullivan, and M. Paulin. Query-driven constraint
acquisition. In IJCAI’07, pages 50-55, 2007.

[Bessiere et al., 2013] C. Bessiere, R. Coletta, E. Hebrard,
G. Katsirelos, N. Lazaar, N. Narodytska, C-G. Quimper,
and T. Walsh. Constraint acquisition via partial queries. In
IJCAI’13, pages 475481, 2013.

[Boutilier e al., 2004] C. Boutilier, R. I Brafman,
C. Domshlak, H. H. Hoos, and D. Poole. Cp-nets:
A tool for representing and reasoning with conditional
ceteris paribus preference statements. JAIR, 21:135-191,
2004.

[Chajewska et al., 2000] U. Chajewska, D. Koller, and
R. Parr. Making rational decisions using adaptive utility
elicitation. In AAAI/IAAI, pages 363-369, 2000.

[Chen and Pu, 2012] L. Chen and P. Pu. Critiquing-based
recommenders: survey and emerging trends. User Mod-
eling and User-Adapted Interaction, 22(1-2):125-150,
2012.

[Freuder and Wallace, 1998] E. C. Freuder and R. J. Wal-
lace. Suggestion strategies for constraint-based match-
maker agents. In CP’98, pages 192-204, 1998.

[Goetschalckx et al., 2015] R. Goetschalckx, A. Fern, and
P. Tadepalli. Multitask coactive learning. In IJCAI’l4,
pages 3518-3524, 2015.

[Goldsmith and Junker, 2009] J. Goldsmith and U. Junker.
Preference handling for artificial intelligence. Al Maga-
zine, 29(4):9, 2009.

[Guerin et al., 2013] J. T. Guerin, T. E. Allen, and J. Gold-
smith. Learning cp-net preferences online from user
queries. In Algorithmic Decision Theory, pages 208-220.
2013.

[Koriche and Zanuttini, 2010] F. Koriche and B. Zanut-
tini. Learning conditional preference networks. Al
174(11):685-703, 2010.

[Lallouet ef al., 2010] A. Lallouet, M. Lopez, L. Martin, and
C. Vrain. On Learning Constraint Problems. In ICTAI’10,
pages 45-52, October 2010.

[Raman ef al., 2013] K. Raman, T. Joachims, P. Shiv-
aswamy, and T. Schnabel. Stable coactive learning via
perturbation. In ICML’13, pages 837845, 2013.

[Sebastiani and Tomasi, 2015] R. Sebastiani and S. Tomasi.
Optimization modulo theories with linear rational costs.
ACM TOCL, 16(2):12, 2015.

[Shivaswamy and Joachims, 2015] P. Shivaswamy and
T. Joachims. Coactive learning. JAIR, 53(1):1-40, 2015.

[Teso et al., 2016] S. Teso, A. Passerini, and P. Viappiani.
Constructive preference elicitation by setwise max-margin
learning. In IJCAI’16, 2016. (To appear).

[Viappiani et al., 2006] P. Viappiani, B. Faltings, and P. Pu.
Preference-based search using example-critiquing with
suggestions. JAIR, pages 465-503, 2006.

[Wolsey and Nemhauser, 2014] L. Wolsey and George L.
Nemhauser. Integer and combinatorial optimization.
2014.

