Constructive Layout Synthesis via Coactive Learning

Paolo Dragone* Luca Erculiani
University of Trento, Italy University of Trento, Italy
TIM-SKIL, Trento luca.erculiani@studenti.unitn.it

paolo.dragoneQunitn.it

Maria Teresa Chietera Stefano Teso® Andrea Passerini
University of Trento, Italy University of Trento, Italy University of Trento, Italy
maria.chietera@studenti.unitn.it teso@disi.unitn.it passerini@disi.unitn.it
Abstract

Layout synthesis is the task of arranging entities in space subject to a set of
constraints. In this paper we address the task of learning to synthesize layouts
tailored to the preferences of a user. This learning task arises, for instance, in
developing recommendation systems for furniture arrangements or architecture
design aiding systems. We employ the coactive learning framework to devise
a constructive recommendation system for 2D layout synthesis that is able to
efficiently create customized layouts. Experiments show how the system performs
on problems with increasing complexity.

1 Introduction

Layout synthesis is a design process that involves the arrangement of objects in space subject to a
set of constraints. Layout synthesis tasks include furnishing a room [10, 3| 9] or designing urban
spaces [1]], to mention a few. As other complex design processes, layout synthesis can be cast as a
decision tasks driven by the preferences of a designer or a customer. In furniture arrangement, an
apartment may be furnished in a minimalist or industrial style depending on the owner. Most of the
previous works are, however, based on optimization [10] or off-line supervised techniques [3} 9],
not taking into account the preferences of the target user. Few other systems allow for limited
interaction [[1]] but do not attempt to generalize from the examples collected. In this paper, we propose
a learning method to cast the layout synthesis problem as recommendation task. Differently from
classical recommendation tasks, in which a fixed set of candidates is assumed, layouts have to be
assembled from their individual components. Therefore finding the best candidate layout for a user
may involve the search over an exponentially large space of candidate layouts. The problem can thus
be considered as a constructive recommendation task. Building up on previous work [8l [7} |6} 2]], we
propose a constructive method to interactively learn the user preferences and recommend personalized
layouts. Our method is based on Coactive Learning [5], an online learning method that allows to learn
the user preferences about structured instances (in our case layouts) through manipulative feedback.

In this work we consider the task of arranging 2D objects in a canvas. In this case, layouts can be
represented as ensembles of components whose properties (e.g. position, size) are described by
constraints. The underlying optimization problem can thus be readily formulated as a constraint
satisfaction problem. We demonstrate our method on the task of arranging furniture in a room. We
present experimental results to show the quality of the learning algorithm and its computational
performance in settings with increasing complexity.

*PD is a fellow of TIM-SKIL Trento and is supported by a TIM scholarship.
ST is supported by the Caritro Foundation through project E62115000530007.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Algorithm 1 Coactive Learninf]with perceptron update [3]]. Interaction with the user happens within
the QUERYIMPROVEMENT procedure.

1: procedure COACTIVELEARNING(X, ¢, T)

2 Initialize w'

3 fort=1,...,Tdo

4 z! « argmax,c p (W', P(x))

5

6

7

7' + QUERYIMPROVEMENT ()
w't —w' + $(z') — P(a')
return argmax, .y (w?, ¢())

2 Coactive Learning

Coactive Learning [5] is an interactive framework for learning a utility function from the user
feedback. Given a set of structured entities x € X', henceforth called configurations, the preferences
of the user over X are represented by a linear utility function u(z) = (w, ¢(z)). Here ¢ : X — R™
is a feature map from the configuration space to some m-dimensional feature space, and w € R™ are
the parameters of the model that have to be learned. As shown by Algorithm[I] at each iteration ¢, the
system recommends the configuration z! with maximum utility with respect to the current estimate
of the weights w’ (line [d):

2t = argmax,c y (w', $(x)) (1)
To learn the parameters of utility function, the algorithm requires the user to answer to improvement
queries. After receiving a recommendation x¢, if not satisfied, the user has to provide a configuration
z! that is a slightly improved version of 2! (line[5). The pair (z*,z?) is then used as an implicit
ranking example to update the utility model (line [B). The true utility of the user is determined
by the true weight vector w*: u*(x) = {(w*, ¢(x)). In recommending x! in place of an optimal
configuration x*, the system suffers a regret (utility loss) of u*(z*) — u*(a?). The goal of a coactive
learning system is to minimize the average regret at time 7:

REGT = 7 3, (u”(2*) — u*(2")) @)
Given reasonable assumptions on the informativeness of the user, Algorithm [1|yields an average
regret that is upper bounded at iteration 7 by O(1/v/T), see [3]] for an in-depth explanation.

3 Constructive layout synthesis

Coactive Learning has been employed in recommendation settings where the task was selecting one
or more instances from a fixed set of candidates, such as movies [S]. Layouts, on the other hand,
are complex entities composed of several pieces that have to comply the given “rules”, and thus
recommending them equates to assembling them from scratch on the basis of the user preferences.
Moreover, previous applications of coactive learning assumed an implicit user feedback, such as
clicks on links from a ranked list of urls. In this work we rather focus on an interactive design task
in which the user is actively involved in shaping the desired configuration. In other words, we cast
layout synthesis into a constructive recommendation task. A layout x € X is represented as set
of variable attributes encoding the properties of its components, e.g. the position and size of each
piece of furniture. A layout is considered feasible only when it satisfies the constraints imposed by
the problem. For instance, the pieces of furniture in a room must not overlap and there should be
enough space left to walk around the room. The space of feasible configurations X is composed
by all possible assignments of the attributes subject to the problem constraints. The size of X may
therefore be exponential in the number of attributes. To handle this very large search space, we
encode the inference problem (Eq. [1]) as a constraint satisfaction problem. When the constraints
and the feature map are linear in the attributes of z, the inference problem becomes a mixed integer
linear program (MILP). MILP problems are a class of well studied optimization problems that can be
efficiently solved by off-the-shelf solvers. Mid sized problems can be quickly solved to optimality,
whereas for larger instances only suboptimal solutions may be affordable. As we show in Section ]
the performance of our method is not significantly affected by these approximations.

3Differently from the original formulation, we assume for simplicity that the contextual parameters are
hard-coded in the inference problem, and thus we use a “context-less” utility model.



=—a CL 6tables =—a CL 6 tables
o o— CL 8tables 80(e—e CL 8tables
<+ CL 10 tables <+—< CL 10 tables
CL 10 tables (approx)

+— CL 10 tables (approx)

0.8

0.6

Average regret

20
0.2

0.0
0

0 10 20 30 40 50 60
Iterations Iterations

Figure 1: Average regret (left) and cumulative time (right) of the system. Best viewed in color.

4 Experiments

As a testbed for our layout synthesis system, we developed a furniture arrangement application,
whose goal is learning to arrange tables in a room according to the user preferences. A room is a
discrete 2D bounding box and the tables are modelled as rectangles of various shapes. The tables are
identified with their coordinates in the room and the lengths of their edges. All the tables have to fit
in the room and they can not overlap. The constraints for the furniture arrangement task are similar to
those of the bin-packing problem, which has been extensively studied in constraint programming and
operations research [4], and is well supported by existing MILP solvers. The objective is however
different: while in bin-packing the objective is to pack as much stuff as possible in the least number of
bins, in our case the goal is to find a layout with maximal utility for the user. Each problem instance
is represented by a room with a certain (typically non-rectangular) shape and size, doors on the walls
and a certain number of tables to be placed. When placing tables, the system needs to keep a free
path connecting doors. In our experiments we also restrict the tables to be of size 1 x 1,2 x 1 or
1 x 2. We assume that the same room layout is used throughout the learning procedure for each
recommendation task, so that the system can be seen as a sort of design support tool for architects
or amatours. We plan to extend the system to be able to generalize to different layouts, by learning
weights that are insensitive to the specific characteristics of the instance.

Inference (Eq.|1) and improvement problems are tackled using an external MILP solvelﬂ Users are
simulated by randomly sampling user-specific weight vectors w*. User improvements are generated
by solving the following problem:

! = argmin,cp u*(z) st u*(Th) > ut(at) + a(u*(z*) — u*(zh))

T
The parameter « € (0, 1] represents the informativity of the user improvements (see [3] for more
details) and was set to 0.2 in all our experiments. The feature map ¢ is composed of 10 features
including: [i] max and min distance between tables on each of the axes; [ii] max and min distance of
tables from external walls (bounding box); [iii] max and min distance of tables from internal walls;
[iv] number of 1 x 1 tables and 2x 1 or 1 x 2 tables.

In our first experiment we focused on a quantitative evaluation of the system performance, for an
increasing complexity of the scenarios as given by the number of tables. Intuitively, the more tables
to fit in the room, the more variables to handle and constraints to satisfy. The room used in this
experiment has size 12 x 12 and has the layout of the café showed in Figure 2] We first test our
method with 6, 8 and 10 tables using exact optimization, i.e. leaving the solver running until it finds
the global optimum. We then run our algorithm with 10 tables using approximate inference, i.e. by
imposing a 20 seconds time cut-off to the solver and keeping the best solution found. We run the
experiment on 20 users with randomly sampled weight vectors. Figure [I| shows the average results
over all users. On the left we plot the median average regret for varying number of tables, on the
right the mean cumulative time needed for learning. For all settings, the regret drops from around 20
at the first iteration (not plotted) to below 1 in less than 10 iterations, and then keeps decreasing at a
slower rate. As expected, the higher the number of tables, the higher the average regret. Despite the

*Opturion CPX: [www . opturion.com/cpx


www.opturion.com/cpx

Initial Intermediate Final

Café
I O
H N N N
._.—-l I DEEEN
. L] L] .
. .
Office e m_ ..
- N
| - -

Figure 2: Two examples of configurations built by our system when used by users who are furnishing
a café or an office. The figure shows different stages of algorithm while learning the user preferences.
The tables are colored in brown and the doors in red. The path between the doors is colored in grey
and the walls are represented with black striped sections. Best viewed in colors.

increased complexity, the regret decreases with the same pattern in all cases. We can also see that
using approximate inference does not substantially affect performance: the average regret is slightly
higher than with exact inference in the first iterations, and the two curves eventually overlap. By
observing the right plot we can see that using exact inference, the cumulative time clearly rises with
the number of tables. The time needed for 10 tables with exact inference is largely impractical. On
the other hand, using a time cut-off to approximate inference, we can keep running times low and
predictable. This shows that our method can scale to more complex problems in predictable running
time with a minor loss in performance.

In the second set of experiments we focused on two particular types of table arrangements, namely
cafés and offices. In cafés tables are usually of size 1 x 1 and are often positioned in a regular pattern
along the walls, tightly packed together to leave room for the people standing. In offices instead there
are mostly desks, i.e. tables of size 2 x 1 or 1 x 2, and they are spread inside the room following
regular patterns e.g. in rows or columns. We generated a user interested in furnishing a café and
one interested in an office, by sampling weights according to the above criteria. Figure [2] shows
examples of configurations synthesized by our system while learning from the interaction with these
two users. This figure shows how our system is able to learn different kinds of furniture arrangements
for different users. In both cases the initial configuration is random since weights are randomly
initialized. In the intermediate case, about half way to convergence, some patterns can be observed
which resemble the desiderata for cafés and offices respectively. Final recommendations clearly
match our above descriptions.

5 Conclusion

We presented a coactive learning system for automatic layout synthesis. This approach is suitable for
developing constructive recommender systems, like design aiding tools. We tested our method on a
furniture arrangement scenario in which the goal is to furnish a space with tables, e.g. furnishing a
café or an office. Results show that our system is able to learn different types of arrangements on the
basis of the users preferences and to scale to complex scenarios using approximate inference.

As mentioned in Section[d} the context-less utility model is a simplifying assumption that we aim to
remove in the near future. Another future work is the hierarchical modelling of houses, including
automatic design of floors, rooms and furniture. In this setting, we could ask the user to “sketch”
a local improvement on a single room and have the system learn to generalize the improvement to
all rooms of the house, keeping in mind the different roles of the other rooms. Another interesting
research direction is extending the system to support quadratic constraints (relying on the recent
advances in quadratically constraint quadratic programming solvers), which would allow to encode
measures such as Euclidean distances and areas.



References

[1] D. G. Aliaga, C. A. Vanegas, and B. Benes. Interactive example-based urban layout synthesis.
In ACM TOG, volume 27, page 160. ACM, 2008.

[2] P. Campigotto, R. Battiti, and A. Passerini. Learning modulo theories for preference elicitation
in hybrid domains. CoRR, 2015.

[3] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan. Example-based synthesis of
3d object arrangements. ACM TOG, 31(6):135, 2012.

[4] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem. Operations
Research, 48(2):256-267, 2000.

[5] P. Shivaswamy and T. Joachims. Coactive Learning. JAIR, 53:1-40, 2015.

[6] S. Teso, P. Dragone, and A. Passerini. Structured feedback for preference elicitation in complex
domains. In BeyondLabeler Workshop at IJCAI 2016, 2016.

[7] S. Teso, A. Passerini, and P. Viappiani. Constructive preference elicitation by setwise max-
margin learning. In IJCAI, pages 2067-2073, 2016.

[8] S. Teso, R. Sebastiani, and A. Passerini. Structured learning modulo theories. Artificial
Intelligence, 2015.

[9] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and P. Hanrahan. Synthesizing open worlds
with constraints using locally annealed reversible jump mcmc. ACM TOG, 31(4):56, 2012.

[10] L. F. Yu, S. K. Yeung, C. K. Tang, D. Terzopoulos, T. F. Chan, and S. J. Osher. Make it
home: automatic optimization of furniture arrangement. ACM Transactions on Graphics
(TOG)-Proceedings of ACM SIGGRAPH 2011, v. 30, no. 4, July 2011, article no. 86, 2011.



	Introduction
	Coactive Learning
	Constructive layout synthesis
	Experiments
	Conclusion

