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ABSTRACT

Recommendation systems have seen a great burst in popularity
and innovation in the past few years. However, both industrial
applications and academic research have, been focussing on rec-
ommendation tasks involving objects taken from some fixed pool
of available candidates (e.g. a database of products). A research
direction that has remained unexplored involves the recommen-
dation of objects that can be configured on the basis of the user
preferences. We call this kind of recommendation tasks constructive,
as the recommended objects are “built” from scratch to maximize
the user satisfaction. Constructive tasks include recommendation
of many types of objects that can be assembled from their compo-
nents, such as PC configurations, recipes, travel plans or shared
schedules to mention a few. Object synthesis usually involves solv-
ing a constrained optimization problem over a very large (or even
infinite) domain of feasible configurations. For this reason, many
of the existing recommendation techniques are not suitable in this
setting, since they are based on the assumption of a finite and rela-
tively small set of available objects. The objective of my research
is to adapt or create new machine learning techniques suitable for
constructive recommendation tasks.
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1 INTRODUCTION

Constructive recommendation tasks consist in recommending struc-
tured objects that can be created by assembling them from their
components, such as PC configurations [11], travel plans [10] or
layouts [3]. Each object is represented as a set of attributes, e.g.
shape, size, color, i.e. Boolean or numeric variables that describe
the physical properties of the object. The space of possible object
configurations is exponential in the number of attributes, or infinite
if some attributes are continuous variables. The possible configu-
rations can also be constrained by arbitrary boolean formulas to
limit the feasible space. We consider the problem of finding the best
object for the user in this large combinatorial space of candidates. In
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Algorithm 1 The Preference Perceptron algorithm [9].

1: procedure PREFERENCEPERCEPTRON(T)

2 wl 0

3: fort=1,...,Tdo

4 Receive user query x’

5 y'  argmax, cy (w'. $(x'. 1))

6: Receive user feedback i’

7 Wil w4 g(x,5) - gt y")

this setting, classical recommendation techniques cannot be applied
for several reasons. Most existing content-based and collaborative
techniques are based on the assumption that available objects come
from a fixed pool of existing ones that can be explicitly stored in
a database. This is not the case in constructive recommendation,
since the large domain of feasible objects is implicitly defined by
the domains of the attributes and the imposed constraints. Another
strong limitation of collaborative filtering in a constructive scenario
is the structural scarcity of collaborative data, as having a very large
domain of objects implies that most objects are only ever reviewed
by a handful of users. For this reason we rather adopt an interactive
paradigm in which every user provides (implicitly or explicitly)
preference information to the system. The process of collecting
preference statements from the user is called preference elicitation.
Many preference elicitation techniques have been proposed over
the years [4, 6, 13, 14] but most of them rely on the same assump-
tion of a finite pool of candidates. An exception in this trend is
the work from Teso et al. [11], which paved the way towards this
research line. Conversely to its Bayesian competitors [4, 14], the
system proposed by Teso et al. [11] is capable of scaling up to large
constructive domains composed of several hundreds of possible
configurations while still being competitive in terms of recommen-
dation quality. Preference elicitation algorithms iteratively make
recommendations to the user and ask for feedback. The objective
is to maximize the users satisfaction while keeping them interested
and engaged. This process can also be seen as an online preference
learning problem. We proved that online techniques, such as Coac-
tive Learning [9], can be used to learn user preferences and make
recommendations in constructive settings [3, 10]. In the following
sections I describe the two main components of a constructive rec-
ommendation system, namely the learning model and the inference
solver. Next I outline some of my already accomplished works and
lastly I highlight some research lines I will address in my PhD.

2 LEARNING MODELS

In constructive recommendation, user preferences are represented
as a utility function u : X X Y — R that maps each object y € Y to
a real-valued score representing its level of user satisfaction. The
user utility depends also on the “context” x € X, i.e. additional
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(implicit or explicit) side information available at recommenda-
tion time. The true user utility function u*(x, y) is unknown and
never directly observed by the system. The system needs to col-
lect some kind of preference information by interacting iteratively
with the user. At each iteration t, as new preference information
is acquired, the system can refine its estimate u’(x, y) of the true
utility function. An assumption often made in the literature is to
consider linear utility functions of the type u(x,y) = (w’, ¢(x, 1))
where w! € R™ is the current estimate of the weight parameters
of the utility model and ¢ : X x Y — R™ is a feature map from
the joint context-object space to an m-dimensional feature space.
To estimate a utility function from the user preference feedback,
we mostly focus on online preference learning algorithms, which
are particularly suited to deal with constructive recommendation
tasks. In our previous work, we often employed Coactive Learning
algorithms [8, 9]. Coactive Learning is a framework for learning
a utility function from the user manipulative feedback. After re-
ceiving a recommendation, the user is asked to provide a slightly
improved version of the recommended object. Algorithm 2 shows
the Preference Perceptron algorithm, which is one the simplest, but
rather effective, Coactive Learning algorithms. At each iteration ¢,
the algorithm receives a context xt € X, which may include side
information or some kind of user query. The system then makes
a recommendation y’ € Y by maximizing the current estimate of
the user utility. The system then receives an improvement i’ € Y
from the user, such that u*(x!, §’) > u*(x’, y"). Using the ranking
information provided by the pair (y?, ), the algorithm can update
the current estimate of the weights.

The objective of the Preference Perceptron is to minimize the
average regret of the system:

REG" = 7 X1 w'(x'.yp) —u'(x". y")
where y; = argmax, c y u*(x?,y) is the optimal object for the user

in context x*. In Coactive Learning [9] the user is assumed to behave
according to the following a-informative feedback model:

w'(xf, g —ut (L yh) = a(w (!, yp) - u(xFLyh)) - &
This model requires the user feedback g’ to improve y* of a fraction
a of the regret, modulo a slack £/. When the user behaves according
to this model, the average regret of the Preference Perceptron is

guaranteed to decrease as O(1/VT). In particular, the average regret
is upper-bounded by (proof in [9]):

2R||w”
REGT < 2l 4 45T &t o)

where w* are the true weights of the user and R is the radius of the
smallest ball enclosing the feature space, i.e. ||¢(x,y)|| < R.

3 OBJECT SYNTHESIS

The second component needed to build a constructive recommenda-
tion system is an inference procedure that, given the current utility
model, generates new objects with high utility. In the Preference
Perceptron, the recommendation step consists in finding the object
with highest utility in the space Y of feasible configurations:

yl = argmaxy€y<wt, d(xt,y)

As overviewed in Section 1, the configuration space Y is a com-
binatorial space defined by the domains of the attributes and the
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Algorithm 2 The Critiquing Preference Perceptron algorithm.

procedure CRITIQUINGPERCEPTRON
wl <0
fort=1,...,Tdo
Receive query x’ from the user
y! — argmaxyey(wt, d(x',y))
User provides improvement
if NEEDCRITIQUE(x?, 37, ') then
Receive critique p from the user
¢! — ¢! olpl
w!t — wl o[0]
wt‘+1 — wt + ¢t(xt7gt) _ ¢t(xt’yt)

¢t+1 — ¢t

imposed constraints. Attributes may be boolean or numerical (inte-
ger or real) variables. Making inference over this space equates to
solving a constrained optimization problem. The difficulty of the
inference problem greatly depends on the type of constraints and
features used. In the simplest case, when constraints and features
are linear functions of the attributes, inference is a mixed integer
linear program (MILP). While being NP-hard in the general case,
modern solvers can find exact solutions to large problems in rea-
sonable time. In many cases, however, exact solutions are too com-
putationally expensive to find and thus approximation techniques
may be used. The feasibility of non-linear optimization inference
problems for constructive recommendation is still an open research
question.

4 INITIAL RESULTS

In this section I point out some of the results I have already found
in my work. I first describe an extension of Coactive Learning to
allow feature elicitation in constructive domains, called Coactive
Critiquing. Secondly, I detail an applicative constructive recommen-
dation system, using Coactive Learning, to recommend layouts, i.e.
2D arrangements of objects.

4.1 Coactive Critiquing

Feature selection is an important but quite daunting task. Particu-
larly so in constructive recommendation systems. In general, rele-
vant preference criteria (i.e. features) may differ from user to user.
Engineering all the relevant features for all users is expensive and
error prone. Moreover, learning and solving inference in a high-
dimensional feature space requires more data and more comput-
ing time. In this work, we proposed a procedure to elicit relevant
features as additional user feedback. We modified the Preference
Perceptron algorithm to allow the system to ask critiques to the
user. Critiques are “explanations” that are asked when the system
receives ambiguous improvements. Given an example pair (y?, §?),
a critique is a function discriminating §° from y?.

Algorithm 2 lists our Critiquing Perceptron algorithm. At each
iteration ¢, after receiving the improvement g’ the system has the
option of asking the user to provide a critique for the example. To
decide whether a critique is needed, we check if the example is
consistent with all the previous ones, i.e. whether there exists a
weight vector w that describes all the ranking examples. If this
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Figure 1: Regret and acquired features for the synthetic problem (left) and the trip planning problem (right) in Coactive

Critiquing [10]. Best viewed in color.

check fails, it means that the current feature space cannot represent
all the collected examples. When this happens we ask the user for
a critique of the last example, which we then use to enlarge the
feature vector with a new feature. In this way, the feature space
grows only when necessary, keeping the learned model simple and
inference time low.

We found that the Critiquing Perceptron enjoys a regret upper-
bound analogous to that of the Preference Perceptron (Eq 1). For a
a-informative user the average regret of the Critiquing Perceptron
is upper-bounded by (proof in [10]):

REGT < —211”‘77 Ly LT (&t 4yt
where
’7t = <W*’ ¢*(xt’ gt) - ¢*(xt7 yt)> - <W*a ¢t(xt7 gt) - ¢t(xt’ yt»
is the amount of utility gain the Critiquing Perceptron “misses out”
by having only a subset ¢ of the relevant user features ¢*.

We also tested our algorithm on two constructive settings, a
synthetic problem and a realistic problem involving trip plan rec-
ommendations. We compared the Critiquing Perceptron (cc) with
the standard Preference Perceptron (cL) using different percentages
of user features. The former starts with only basic features and
elicits more during the interaction, whereas the latter starts with
a percentage of additional features on top of the basic ones but
does not elicit more. As we can see in Figure 1, in both settings the

Critiquing Perceptron is able to rapidly decrease the regret as cL
60% or 80% while eliciting only a fraction of the total user features.

4.2 Constructive Layout Synthesis

In this work, we presented a constructive recommendation system
to recommend layouts, i.e. 2D arrangements of objects. Examples
of recommendation problems involving layout synthesis are rec-
ommendation of furniture arrangements, space division, or urban
planning. This system is able to learn the “style” of a designer or an
architect and recommend new configurations on the basis of their
preferences. Coactive Learning is particularly suited in this setting
because we imagine to be able to learn from designers sketches
as improvements to recommended configurations. We instantiated
this system on a furniture arrangement task, in which the goal of
the system is to learn to arrange tables in a room. The contexts x
include the shape of the room and the number of tables, whereas
the attributes of y consist in the coordinates and the sizes of all
the tables in the room. Features ¢(x, y) include different high-level
properties of the table arrangement, such as the maximum and

minimum distances between the tables and the maximum and mini-
mum distances between the tables and the walls. Several constraints
are imposed to ensure the tables fit into the room and they do not
overlap.

The difficulty of the inference problem grows with the number
of tables, as more variables and constraints are added for each table.
When the difficulty of the problem is too high to be solved in a small
amount of time, we employ an approximation heuristic consisting
in setting a time cutoff on the solver and retaining the best solution
found in that time. We tested this system with 6, 8, and 10 tables with
exact inference, and 10 tables with approximate inference. We can
see from the plots on the left in Figure 2 that the regret follows the
same descending pattern for all settings with exact inference, with
minor differences as the problem complexity grows. The running
times, however, become quickly unfeasible for the case with 10
tables. The approximate version, instead, has predictable running
time for the price of a small loss in recommendation quality.

We also evaluate this setting qualitatively by showing how the
system can learn to furnish different type of rooms depending on
the user preferences. We selected two users with different goals,
one who wants to furnish a café and another who wants to furnish
an office. We run our algorithm on these users and we show, in
the right block of Figure 2, different stages of the two elicitation
processes. The initial configuration is random in both cases. In
the intermediate configuration we can already see some emerging
patterns, for instance the choice of mostly 1 X 1 tables in the café.
In the final configurations, the café has all 1 X 1 positioned along
the walls, as one might expect in a café, while the office contains
mostly 1 X 2 desks positioned in a regular fashion across the room.

5 RESEARCH DIRECTIONS

Constructive recommendation brings up a wide range of interesting
research questions, starting from the selection of the best learn-
ing model, to the difficulty of constrained optimization on large
domains. My research is focused on addressing these issues with
the aim of developing scalable constructive recommendation al-
gorithms and applications. In the following, I outline some of the
problems that I am planning to address during my PhD.

5.1 Online preference learning

Learning algorithms used in constructive recommendation systems
should be fast and scalable to large volumes of data, as typical of
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Figure 2: Left: average regret (top) cumulative running time (bottom) of the layout synthesis system [3]; Right: Two examples
of configurations built by our system when used by users who are furnishing a café or an office. The figure shows different
stages of algorithm while learning the user preferences. The tables are colored in brown and the doors in red. An automatically
generated path between the doors is showed in grey the walls are represented with black striped sections. Best viewed in colors.

modern recommendation systems. Online preference learning al-
gorithms are well suited candidates. There is, however, little work
in online preference learning when it comes to defining the right
interaction protocol with the user and the best policy to select the
recommendation maximizing both the satisfaction of the user and
the information gained by the feedback. Both these aspects are
crucial in the constructive scenario. Furthermore, in the case of
Coactive Learning, while this framework is well suited in some
scenarios, manipulative feedback may not be easy to acquire from
the user in many constructive tasks. An alternative to the coactive
feedback is the choice set feedback, a well studied type of user
interaction in the literature of algorithmic decision theory and pref-
erence elicitation [5, 7, 12]. Choice set feedback is often deemed less
effort demanding for the user [4]. In a recent work, we developed
an online algorithm, specifically designed for constructive tasks, to
learn from choice set feedback. Differently from Coactive Learning,
the use of choice set feedback brings up the problem of how to select
recommendation sets. In this work, we developed a theoretically-
driven selection strategy and we produced empirical results favour-
ing our approach over existing preference elicitation techniques
both in recommendation quality and running times. Future work in
this direction include: [i] increase expressiveness of our preference
models by employing long-standing preference elicitation tools,
such as GAI utility functions and CP-nets [1]; [ii] generalize local
feedback on portions of the objects (a.k.a. “sketches”) by exploiting
structural properties, e.g. generalize improvements over a single
room to the entire house in layout synthesis tasks [3].

5.2 Feature selection and elicitation

As pointed out in Section 4.1, feature selection is a crucial aspect in
constructive recommendation systems and Coactive Critiquing is
one possible approach to learn relevant user features by eliciting
them as additional critiquing feedback. While being quite effective,

this approach requires further user involvement in providing cri-
tiques, which may be too cognitively expensive. An alternative that
we are developing is to automatically learn new features directly
from the user improvements or some other source of high-level
feedback. Other possible approaches that we are investigating in-
clude reducing the space of relevant features via a sparsifying L{
norm or by exploiting structural properties of the features, such as
their inheritance [2].

5.3 Inference over combinatorial domains

Recommendations in constructive domains are selected by solv-
ing some kind of constrained optimization problem. As detailed
in Section 3, the inference problem is a MILP problem when con-
straints and features are linear in the attributes. With increasing
domain complexity solving inference exactly becomes impracti-
cal. As in Section 4.2 [3], a viable option is relying on some kind
of approximate inference. However, we are still looking for some
more reliable approximation technique with some guarantee on the
final recommendation quality, instead of the somewhat unreliable
solving time cutoff. Another interesting research question in this
direction is whether we can go beyond linear programs and address
inference in quadratically constrained domains. This would allow
us to describe domains involving areas and euclidean distances,
such as layout synthesis [3].

6 CONCLUSION

In this abstract I presented the topic of Constructive Recommen-
dation, a framework to recommend objects created from scratch
on the basis of the user preferences. I described the two main com-
ponents of a constructive recommendation system, namely the
learning model and the object synthesis. I outlined some of my
accomplished work, and I highlighted some unexplored research
direction that I will address in my PhD.
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