Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Coactive Critiquing: Elicitation of Preferences and Features

Stefano Teso
stefano.teso @unitn.it
University of Trento

Via Sommarive 9, Povo
Trento, Italy

Paolo Dragone
paolo.dragone @unitn.it
University of Trento
TIM-SKIL
Via Sommarive 9, Povo

Andrea Passerini
andrea.passerini @unitn.it
University of Trento
Via Sommarive 9, Povo
Trento, Italy

Trento, Italy

Abstract

When faced with complex choices, users refine their own
preference criteria as they explore the catalogue of options.
In this paper we propose an approach to preference elicita-
tion suited for this scenario. We extend Coactive Learning,
which iteratively collects manipulative feedback, to option-
ally query example critiques. User critiques are integrated
into the learning model by dynamically extending the feature
space. Our formulation natively supports constructive learn-
ing tasks, where the option catalogue is generated on-the-fly.
We present an upper bound on the average regret suffered by
the learner. Our empirical analysis highlights the promise of
our approach.

Introduction

Preference elicitation (Goldsmith and Junker 2009) is the
task of interactively inferring preferences of users and it is
a key component of personalized recommendation and deci-
sion support systems. The typical approach consists of ask-
ing the user to rank alternative solutions (Chajewska, Koller,
and Parr 2000; Boutilier et al. 2006; Guo and Sanner 2010;
Viappiani and Boutilier 2010) and use the resulting feed-
back to learn a (possibly approximately) consistent user util-
ity function. These algorithms rely on a fixed pool of solu-
tions from which to choose both candidates for feedback and
final recommendations. However, when thinking of an inter-
action between a user and a salesman, one imagines a more
active role by the user, who could suggest modifications
to candidates. For instance, in a trip planning application,
when commenting a candidate trip to New York, the user
may reply: “I’d rather visit the MoMA than Central Park”.
This is especially true when considering fully constructive
scenarios (Teso, Passerini, and Viappiani 2016), where the
task is synthesizing entirely novel objects, like the furni-
ture arrangement of an apartment or a novel recipe for ve-
gan tiramisu. Coactive Learning (Shivaswamy and Joachims
2012) is a recent interactive learning paradigm which allows
the user to provide corrected versions of the candidates she
is presented with.

While Coactive Learning approaches adapt the prefer-
ence model based on user-provided option improvements,

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2639

the set of features that the utility is defined by is assumed
given and fixed. This is not always a realistic assump-
tion. When faced with a complex decision, users may not
be fully aware of their own quality criteria, especially in
large, unfamiliar decision domains (Chen and Pu 2012;
Pu and Faltings 2000). Even more so in constructive set-
tings, where the option catalogue is exponentially (possi-
bly infinitely) large and generated on-the-fly. Crucially, the
user may become aware of novel preference criteria, in a
context-specific fashion, while exploring the decision do-
main (Payne, Bettman, and Johnson 1993; Slovic 1995).

One way to tackle this problem is to enumerate all po-
tential user criteria in advance, by combining a fixed set of
features with one or more operators (e.g. multiplication or
logical conjunction). This solution however has drawbacks.
First, the number of feature combinations suffers from com-
binatorial explosion, making learning harder and more com-
putationally demanding. Most importantly, entirely novel
and unanticipated user criteria can not be added to the fea-
ture space.

Example critiquing (or conversational) recommendation
systems (Tou et al. 1982; McGinty and Reilly 2011; Chen
and Pu 2012) provide an alternative solution. In this setting,
preferences are stated in term of critiques to suggested con-
figurations. Upon receiving one or more proposals, the user
is free to reply with statements such as “this trip is too expen-
sive” or “I dislike crowded places”. Critiques are integrated
into the learner as auxiliary constraints or penalties (Faltings
et al. 2004). Options presented at later iterations are cho-
sen based on the collected feedback, focusing the search on
more promising items. Example critiquing is explicitly de-
signed to address the above difficulty: by being confronted
with a set of concrete items, the user has a chance to re-
alize that she cares about features that she was previously
unaware of (Chen and Pu 2012). Unfortunately, typical con-
versational systems do not support numerical modelling of
user preferences (e.g. weights), and often assume noiseless
critiquing feedback.

In this paper we present a new algorithm, Coactive Cri-
tiquing (CC), that unifies coactive learning and example cri-
tiquing, harnessing the strengths of both strategies. Coac-
tive Critiquing builds on the coactive learning framework
by further allowing critique feedback. We view critiques as
arbitrarily articulated explanations for the user-provided im-

provements, e.g. the user may explain her reason for sug-
gesting the MoMA over Central Park by stating: “I prefer
indoor activities during winter”. In this work, we assume
that there is an interface between the algorithm and the user
which translates the user’s critiques into (soft) constraints'.
Newly acquired constraints are included into the learning
problem as additional features. We extend the regret bounds
of Shivaswamy and Joachims (2015) to the more general
case of growing feature spaces. Our empirical findings high-
light the promise of Coactive Critiquing in a synthetic and a
realistic preference elicitation problem, highlighting its abil-
ity in offering a reasonable trade-off between the quality of
the recommendations and the cognitive effort expected from
the user.

In the next section we position our work within the related
literature. In the Method section we motivate, detail and an-
alyze our proposed method. We describe our empirical find-
ings in the Empirical Evaluation section, and conclude with
some final remarks.

Related Work

There is a large body of work on preference elicita-
tion (Goldsmith and Junker 2009). Due to space restrictions,
we focus on the techniques that are most closely related to
our approach.

Coactive Learning (CL) is an interaction model for
learning user preferences from observable behavior (Shiv-
aswamy and Joachims 2012), recently employed in learn-
ing to rank and online structured prediction tasks (Shiv-
aswamy and Joachims 2015; Sokolov, Riezler, and Cohen
2015). For an overview of the method, see the next sec-
tion. The underlying weight learning procedure can range
from a simple perceptron (Rosenblatt 1958) to more spe-
cialized online learners (Shivaswamy and Joachims 2015).
Further extensions include support for approximate infer-
ence (Goetschalckx, Fern, and Tadepalli 2014) and multi-
task learning (Goetschalckx, Fern, and Tadepalli 2015).
These extensions are orthogonal to our main contribution,
and may prove useful when used in tandem. However, in
this paper, we only consider the original formulation, for
simplicity. Our approach inherits several perks from CL,
including a theoretical characterization of the average re-
gret (Shivaswamy and Joachims 2015) and native support
for constructive tasks. The main difference between the two
methods, which is also our main contribution, is that in CC
the feature space grows dynamically through critiquing in-
teraction. CL instead works with a static feature space, and
is therefore incapable of handling users with varying prefer-
ence criteria.

The concept of critiquing interaction originated in interac-
tive recommender and decision support systems (Chen and
Pu 2012; McGinty and Reilly 2011; Tou et al. 1982). Cri-
tiquing systems invite the user to critique the suggested con-
figurations, thus supporting the exploration and understand-
ing of the decision domain. Collected critiques play the role

'For instance, it could be a simple form that allows the user to
combine attribute values to form critiques. We are currently work-
ing on automated approaches based on NLP and rule mining.

2640

of constraints (or penalties) in filtering the available options,
allowing the search to focus on the more promising candi-
dates. Our approach is most closely related to user-initiated
critiquing protocols, where at each iteration the user articu-
lates one or more critiques (Chen and Pu 2012). In CC cri-
tiques are elicited at specific iterations only, selected by a
heuristic balancing cognitive cost and expressivity of the ac-
quired feature space (as discussed in the Methods section).
Few critiquing recommenders model the user preferences
numerically. In contrast, CC associates weights to both basic
and acquired features (i.e. critiques). One exception is the
method of Zhang and Pu (2006), which employs a learned
linear utility model. The user chooses an option from a pool
of 5 highest utility options. In this context, critiques are sim-
ple textual descriptions of the advantages of each sugges-
tion over the reference option. The estimated utility is up-
dated through a multiplicative update based on the user’s
pick. cC instead uses the (user-initiated) critiques to improve
the expressivity of the feature space. Other critiquing recom-
menders that include an adaptive component are concerned
with developing effective query selection strategies, e.g. (Vi-
appiani, Pu, and Faltings 2007) and (Viappiani and Boutilier
2009).

Method

We first introduce some notation. We indicate column vec-
tors a in bold and vector concatenation as a o b. The usual
dot product is denoted (a,b) =)", a;b; and the Euclidean
norm as |lal|. Later on we will compute dot products be-
tween vectors of different lengths. In this case, the shorter
vector is implicitly zero padded to the bottom to match the
length of the longer one.

Coactive Learning. We consider a preference learning
setting with coactive feedback; X is the set of feasible item
configurations z; these are represented by an m-dimensional
feature vector ¢*(z). We assume that the feature vector
length is bounded, ||¢*(z)|| < R for some constant R.
The attractiveness, or subjective quality, of a configuration
is measured by its utility, which we assume (Keeney and
Raiffa 1976) to be expressible as a linear function of the
features u*(z) (w*, @™ (x)) = >t wi, ¢f(x). Here
w* € R™ encodes the true, unobserved user preferences.
We write 2* to indicate a maximal utility configuration. The
goal of the system is to suggest high utility configurations
without direct access to w*. A common strategy is to iter-
atively improve an estimate of the true preferences through
interaction with the user, while keeping the user’s cognitive
cost at a minimum.

We follow the Coactive Learning (Shivaswamy and
Joachims 2015) paradigm, which we describe briefly?. In
Coactive Learning, the learner maintains an estimate w?
of the user preferences. At each iteration ¢ = 1,...,7,
the algorithm computes a most preferable configuration

2We only consider a “context-less” version of Coactive Learn-
ing, which is sufficient for our purposes; our method can be
trivially extended to support contexts. See Shivaswamy and
Joachims (2015) for further details.

' € X, by maximizing the current estimate of the util-

ity (w', ¢"(z")). The configuration is then presented to the
user, who is tasked with providing an improved configura-
tion Z¢, e.g. by direct manipulation of z*. The two options
2t and Z! provide an implicit ranking constraint u*(z%) >
u*(«?). The latter is employed to update the preference esti-
mate, in the simplest case with a perceptron update’:
w4 (@) - ¢ ()

In the remainder we assume the user to be «-
informative (Shivaswamy and Joachims 2015): if the
configuration z? is not optimal, the user can always produce
an improvement Z! with higher true utility (modulo mis-
takes). Formally, a-informativity implies that there exists a
constant « € (0, 1] such that, for all ¢, it holds that:

u* (') —u(a') = a (u(z¥) —u*(ah) =& (D)
Improvement errors are absorbed by the (possibly negative)
slack term £ € R. Under this assumption, the average regret
incurred by Coactive Learning after 7" iterations, defined as:

1 X

REGr := T ; (u*(z*) — u*(a"))
is bounded from above as follows.
Theorem 1 (Shivaswamy and Joachims 2015). For an
a-informative user with true preference vector w* and
bounded length feature vectors ||¢* (z)|| < R, the average
regret incurred by Coactive Learning after T' iterations is
upper bounded by

(@)

2R 1
< 2 * - t
REGT < —— [l + aT;g

As a consequence, so long as the user is not too noisy,
the slacks will be small enough, and the bound guarantees
that the average regret will shrink accordingly. While simi-
lar bounds have been proposed for more general users (Shiv-
aswamy and Joachims 2015), here we restrict ourselves to
a-informative users for simplicity. In our presentation we do
not impose any restriction on the type of features used. We
note in passing, however, that the choice of feature type can
heavily impact the complexity of the inference step. There
are however ways to make Coactive Learning work with
approximate inference procedures (Goetschalckx, Fern, and
Tadepalli 2014).

Coactive Critiquing. Coactive Learning presupposes the
user and the learner to have unlimited access to the com-
plete feature function ¢* (z) at all times. This assumption is
often unrealistic. It is well known that users may discover
their own quality criteria while exploring the option cata-
logue (Payne, Bettman, and Johnson 1993); further, critique
queries can be employed to stimulate the users to discover
their own criteria (Faltings et al. 2004). We amend to this
deficiency by augmenting Coactive Learning with support
for example critiquing interaction.

3Other update strategies can be applied, see for instance (Shiv-
aswamy and Joachims 2015); we will stick with the classical per-
ceptron with unit step size for simplicity.

2641

Algorithm 1 Pseudo-code of the Coactive Critiquing algo-
rithm. Here gi)l is the initial feature space, and 7' is the maxi-
mum number of iterations. User interaction occurs inside the
QUERYIMPROVEMENT and QUERYCRITIQUE procedures.

1: procedure CC(¢*, T)

2: w! 0, Do

3 fort=1,...,Tdo

4: z' + argmax, ¢ o (w', @' (x))

5: #' < QUERYIMPROVEMENT(z")
6.
7
8

D+ DU{(z"z")}
if NEEDCRITIQUE(D, ¢*) then
p + QUERYCRITIQUE(z", 7")

0 0

@' « ' o]
10: w’ + w' o [0]
11: end if
12: w' — w4+ ¢'(z) — ' (zh)
13: Pt o'
14: end for
15: return argmax, . (w”, ¢” (z))

16: end procedure

At a high level, Coactive Critiquing works as shown in
Algorithm 1. The algorithm maintains estimates of both the
user preferences w’ and feature function ¢’ (). The initial
set of features ¢' (x) is supposedly taken from a reasonable
default set, provided by a domain expert, by the user her-
self (e.g. through a questionnaire), or other sources (Chen
and Pu 2012). At each iteration ¢, the algorithm performs
an improvement query, as in Coactive Learning (lines 4,
5), but can additionally submit a critique query to the user.
Critiques are only queried when specific conditions are met
(line 7), as described in the next subsection.

Given the proposed and improved configurations, z* and
z! respectively, a query critique (line 8) amounts to asking
the user why she thinks the improved configuration is prefer-
able to the suggested one. Ideally, the user would respond
with a critique p that maximally explains the utility differ-
ence between the two configurations. This interaction pro-
tocol is based on a modest “local rationality” assumption:
when presented with two distinct configurations =%, ¢ € X,
the user can state at least one critique that contributes a sig-
nificant utility difference between the configurations. The
user is free to reply with suboptimal critiques, according to
her current awareness and the required cognitive effort. We
will discuss the impact of suboptimal critiques in our theo-
retical analysis.

The feedback of the critique query consists of a single,
arbitrary critique constraint p. We interpret the latter as a
feature function p(x) that captures whether (or how much)
the constraint is satisfied. In principle, all kinds of features
are acceptable, including indicators and numerical degrees
of satisfaction. For instance, the critique “I prefer indoor ac-
tivities during winter” would equate to a feature that indi-
cates the conjunction of the season being winter and whether
the trip includes one or more indoor activities. The feature
p(x) is appended to the current feature vector ¢'(x); the
weight vector w? is padded accordingly by appending a zero
element (lines 9 and 10). The learner traverses increasingly

more expressive feature spaces ¢',t = 1,...,T, as critiques
are collected. The perceptron update remains the same as in
coactive learning (line 12). The algorithm terminates after a
fixed number of iterations 7', or when the user is satisfied
(e.g. when the regret of the current suggestion x! is small
enough).

When to ask for critiques. Critique queries are key in im-
proving the expressiveness of the feature space. Critiques
are only elicited at the iterations selected by the NEEDCRI-
TIQUE procedure (line 7). The design of this procedure is
crucial. On one hand, if the procedure is too lazy, not enough
critiques are elicited, impairing the representation ability of
the traversed feature spaces. This may in turn make it im-
possible to learn the true utility «*(z). On the other hand, if
the procedure is too eager, the algorithm may end up elic-
iting more critiques than necessary, thus wasting cognitive
effort. We will show in the next section that, unsurprisingly,
the design of the procedure affects the regret incurred by the
learner.

In order to balance between the two, we design a simple
selection criterion, as follows. The idea is to submit a cri-
tique query as soon as algorithm realizes the true utility can
no longer be represented in the current feature space. Since
we do not have access to the true utility, we use the col-
lected ranking feedback (i.e. the dataset, indicated as D in
Algorithm 1) as a proxy. To decide whether to ask for a cri-
tique or not, we check for the existence of a weight vector w
that correctly ranks the pairwise preference examples in D,
i.e. more formally: JwV(z,z) € D (w, ¢(z')—@(x!)) > 0.

This criterion is guaranteed to work in noiseless scenar-
i0s. When the user is noisy though, a vector w satisfying the
ranking constraints may not exist in any subspace of ¢*(z).
In this case, Coactive Critiquing may end up querying for a
critique at every iteration. We did not experience this prob-
lem in practice. We also designed a more sophisticated crite-
rion, based on estimating the likelihood of inconsistencies in
the dataset being due to noise or lack of features. However,
we did not see any improvements using this strategy in our
empirical tests.

Theoretical analysis. Theorem 1 assumes that the feature
space is fixed. In coactive critiquing, however, this is not the
case. Our goal is to extend the theorem to this more general
case.

In Coactive Learning, at each iteration ¢, the utility gain
provided by two configurations Z' over z! is u*(Z!) —
u*(2?), and is lower bounded by the c-informativity as-
sumption (Eq 1). Our algorithm however works in a lower
dimensional feature space than the user’s one, and has ac-
cess to the partial utility u‘(z) = (w*,¢"(x)) only. In
the lower dimensional space, the utility gain amounts to
ut () — ut(at), so it “misses out” on the contribution of
the unobserved features. We write 1¢ to denote the missing
part, quantified as:

no= (@) —u(af) - (uf(2f) — u'(at))
Y i 07 (2Y) — ¢ ()]

€)

2642

where k? is the number of features acquired up to iteration .
Note that i can be either positive or negative, depending on
whether ignoring the missing features worsens or improves
the utility gain, respectively. The latter case can occur when
the ¢* (z') — @™ (x!) update is negatively correlated with w*
with respect to the missing features.

We formalize this intuition in the following proposition,
which is an adaptation of Theorem 1.

Proposition 2. For an a-informative user with true pref-
erence vector w* and bounded length feature vectors
lo* (z)|| < R, the average regret incurred by Coactive Cri-
tiquing after T iterations is upper bounded by

2R

T
1
REGr < ——|lw*|[+ == > (¢ + 7'
T > O[\/T”w || aT pot (5 77)

See the Appendix for the proof. The sum Zle n' on the
right hand side depends on the effectiveness of the user’s cri-
tiques and how often they are asked, as well as the problem
structure. The latter factor is beyond our control, but the for-
mer can be (partially) controlled by properly designing the
interaction with the user. By explicitly asking for the critique
p contributing the most to the utility gain, we are effectively
removing the largest summand from 7 (in practice, the user
errors may make it decrease by a smaller amount). Further-
more, the amount of critiques may reduce the sum of the
n?, at the price of additional cognitive effort for the user. In
the next section we will show that our proposed NEEDCRI-
TIQUE heuristic offers a good trade-off.

Empirical Evaluation

We evaluate Coactive Critiquing on two preference elicita-
tion tasks. All experiments were run on a 2.8 GHz Intel Xeon
CPU with 8 cores and 32 GiB of RAM. Our implementa-
tion makes use of MiniZinc (Nethercote et al. 2007) with
the Gecode backend. The CC source code and the full exper-
imental setup are available at: goo.gl/cTFOFq.

User simulation. We simulated the user feedback as fol-
lows. In improvement queries, the user is asked to produce
an improvement Z° of the suggested configuration 2*. A real
user would choose the improved configuration by balanc-
ing between cognitive effort and perceived quality of the
improvement. To account for this fact, our simulated user
(line 5 of Algorithm 1) computes the improvement by find-
ing a minimal change to x! with improved true utility. This
is done by solving the combinatorial problem:

t

Z' := argmin |z — 2t
THxt
s.t. (w* +&,¢"(z)) > (w* +¢,¢*(2"))

Here ||z — x!|| measures the difference between Z and z?,
and € € R™ is a normally distributed (¢ = 0.1) perturba-
tion that simulates user noise. The user is a-informative as
per Eq 1. In order not to artificially advantage our method,
our simulated user returns a minimal improvement, conse-
quently providing a minimal utility gain.

O

Utility loss
Utility loss

X
R R R R R ISR R R AR &[N
AR AL A AL AL A A

Pl
4

CL 20%
CL 40%
CL 60%
CL 80%
CL 100%
cc

oo

X Y

Utility loss

bt
¥
vy

a ARMTAY X X %
% A
6 ¥ Y wiy ¥
v
2 3
0 0 =
0 10 20 30 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Iterations Iterations Iterations
54 54
CC p=0.25 v—v CL 20% 126 v—v CL20%
[
18 <+— CC p=0.50 18 a—a CL40% 1 »—a CL40%
=+ CCp=0.75 +— CL60% <+— CL60%
2 +— CCp=1.00 42 > CL80% o8 > CL80% M
cc +— CL100%[] +— CL100%
36 36 =—a CC 84 =—a CC
30 30 SR s asrsesssteaissastasnd]

Acquired features
Acquired features

~

Acquired features

yd

20 30 40

Iterations

50 60 10 20 30

40

Iterations

50 60 70 0 20 30 40

Iterations

50 60

Figure 1: Left: comparison of CC for different choices of NEEDCRITIQUE procedure; median utility loss at the top, average
number of acquired features at the bottom. Middle: comparison between CC and CL on the synthetic problem. Right: comparison
between CC and CL on the trip planning problem. Best viewed in color.

In critiquing queries (line 8), the user is asked to re-
turn the critique p contributing the most to the utility gain
of z¢ over x!. Formally, the contribution of feature o7 is
¢i = wi(of(x') — ¢f(at)). Ideally, the user would re-
spond with the feature p with the highest contribution (with
ties broken at random). In practice, she may choose a sub-
optimal critique. We simulate user noise by sampling p from
a multinomial distribution where the probability of choos-
ing ¢; is set to ¢;/ Y, ¢;. This model favors features with
higher contribution, while still leaving room for sub-optimal
choices.

Synthetic Experiment. First, we evaluate our method on
a synthetic task. The configurations are 2D points x with in-
teger coordinates, taking values in a discrete bounding box
of size 100 x 100, for a total of 10* feasible configura-
tions. There are 50 rectangles 71, .. ., r5¢ inside the bound-
ing box. The position and size of the rectangles are sampled
uniformly at random once and kept fixed for all runs. Each
feature ¢ (z),4=1,...,50, acts as an indicator for the cor-
responding rectangle r;: it evaluates to 1 if x is within the
rectangle, and to —1 otherwise. The true weights w* € R°
establish a preference over the rectangles: if w; > 0 the user
prefers configurations contained in r;, and outside of it oth-
erwise. It can be readily seen that most features are uncor-
related, and thus a sufficiently expressive subset of features
is needed to find an optimal solution. The inference and im-
provement simulators were implemented as mixed integer-
linear problems and solved accordingly.

First, we compare our NEEDCRITIQUE heuristic against

2643

an uninformed baseline randomly choosing when to ask for
critiques. Specifically, we replace our heuristic at line 7
with a binomial distribution, varying the parameter 6 &
{0.25,0.5,0.75,1}.

We run all methods over 20 users independently sam-
pled from a 50-dimensional standard normal distribution.
We compute the median utility loss u*(z*) — u*(z") over
all users (the lower, the better) as well as the average num-
ber of acquired features. Execution times are omitted, as the
difference between algorithms is negligible. We report the
results in the left column of Figure 1. As shown by the plots,
our heuristic strikes a good balance between user satisfac-
tion and cognitive effort. In terms of utility loss, it fares
in-between the 6 = 1 (most informed baseline) and the
0 = 0.75 (second most informed) variants, while eliciting
fewer critiques than both. The other baselines are not up to
par.

Next, we compare CC with our NEEDCRITIQUE heuris-
tic against CL. CC always starts from 2 features and ac-
quires new ones dynamically through query critiques. In
contrast, CL has fixed access to p% of the features, for
p € {20,40,...,100}. In order not to bias the results, for
each p we take the average of five different CL runs, each
over a randomly drawn subspace of ¢*(z) of the appropri-
ate size. We refer to this setting as CLP. Given that there is
no standard, accepted way to estimate the real cognitive cost
of replying to improvement or critique queries, we avoid
computing a single unified measure of user effort and rather
count the number of queries separately. We report the results
in the middle column of Figure 1.

In median, cL'%0 reaches zero loss after 11 iterations,

which is hardly surprising, considering its unrestricted (and
unrealistic) access to the full feature space; CC instead takes
41 iterations. All other methods fail to converge. Notably,
CC acquires about 30 features to reach zero median loss, and
beats CL80 in the same metric after 18 iterations, with 14 ac-
quired features. These results highlight the effectiveness of
CC in acquiring relevant features, with consequent savings
of cognitive effort.

Realistic Experiment. We applied Coactive Critiquing
to an interactive touristic trip planning task. We col-
lected a dataset including 10 cities and 15 possi-
ble activities from the Trentino Open data website:
http://dati.trentino.it/. The goal is to suggest
a trip route x between (some of) the cities. Each city has a
particular offering of activities (e.g. luxury resorts, points of
interest, healthcare services) and an overnight cost. Cities
may be visited more than once. Traveling between cities
takes a time proportional to their distance. In our experi-
ments we set the trip length to 10.

We distinguish between base features ¢' (x) and full fea-
tures ¢*(z). The former include the amount of time spent
at each location and the time spent performing each activity,
for a total of 25 base features. The latter include the num-
ber of distinct visited locations, the total time spent travel-
ling, the total cost, the number of visited geographic regions,
among others, for a total of 92 acquirable features. We omit
the full list for space restrictions.

As in the synthetic experiment, we compare CC against
variants of CL obtained by varying the percentage p of avail-
able features over 20 users sampled from a 127-dimensional
standard normal distribution. We report the results in the
right column of Figure 1.

The problem is significantly more difficult than the syn-
thetic one, due to the combinatorial size of the space of con-
figurations. The plots show that CC is very critique-effective:
by the last iteration it acquires about as many features as
cL?? (approx. 27), which is the least informed method, but
it performs considerably better. The baselines cL%° — cL.100
converge faster, having access to most of the features from
the beginning. Our approach performs comparably to cL.5°
from iteration 50 onwards, notwithstanding the much fewer
acquired features (~20 versus ~75, respectively). Although
cL* uses (from iteration 1) about twice the number of fea-
tures eventually acquired by CC, it is surpassed by the latter
roughly at the 40" iteration.

Conclusion

In this paper we described an approach to preference elic-
itation that combines Coactive Learning with example cri-
tiquing interaction. Contrary to coactive learning, the feature
space is acquired dynamically through interaction with the
user. We discussed the theoretical guarantees of the method,
and a heuristic query selection strategy that balances be-
tween user effort and expressivity of the acquired feature
space. We presented experimental evidence in support of our
findings. Coactive Critiquing is competitive with more in-
formed baselines, often requiring many less features to ob-

2644

tain comparable (or better) recommendations. Like conver-
sational recommenders, Coactive Critiquing could in prin-
ciple handle free-form textual or speech critiques, see for
instance Grasch, Felfernig, and Reinfrank (2013).

Coactive Critiquing is especially suited for constructive
preference elicitation tasks (Teso, Passerini, and Viappiani
2016). Given that the computational cost of inference can
become prohibitive in these settings, it may be fruitful to in-
tegrate support for approximate inference, as discussed by
Goetschalckx, Fern, and Tadepalli (2014). Another promis-
ing research direction involves allowing the user to reply
with non-feasible improved configurations. In this case, the
projection of the improvement on the feasible space may
break a-informativity. We are currently investigating how
to tackle this issue.

Acknowledgments ST is supported by the CARITRO
Foundation through grant 2014.0372. PD is a fellow of TIM-
SKIL Trento and is supported by a TIM scholarship.

Appendix A: Proof of Proposition 2

We split the proof in three steps.
(1) The update equation of Algorithm 1 (line 12) is

wT+1 = ,wT +¢T(§7T> _ d)T(.IT)

We expand the dot product (w? 1, wT*1) using the above,
obtaining
(W, wT) + 2(w”, ¢7 (z7) — " («7)) +

(@"(@7) — @' (), ¢" (@) — ¢" («")
The optimality of 27 in the current feature space d)T(x)
(line 4) implies that the second term is no greater than zero.
Given that ||¢” ()| < ||¢*(z)|| < R by assumption, it fol-
lows that
(wT Tt wTty < (wT w?) + 4R <AR*T (4)
(i) Let 27 be a 0-1 vector, of the same shape as w* such
that the only non-zero elements of 2" are those correspond-
ing to the features elicited up to iteration 7". We expand the
dot product (w*, w?*1) using the above update rule to ob-
tain

(w*, w") + (w*, ¢" (z") — ¢" (27))
(w*, w”) + (w*, 2" © [¢" (") - ¢"(2T)])
where © is the element-wise product. We unroll the recur-
sion to get
TH+1y =

)

(w*, w Bl

Yo (w2t @@ (a") — ¢*(x

= (w*, (@) — ¢ (")) —
(w', (1-2" ol¢ () - ¢ ("))
By applying the definition of utility u*(z) to the first term
and the definition of n” to the second one, we get

(we, w"™) = T, [(@) — (@) = im0)
(iii) The Cauchy-Schwarz inequality states that
(w*,wT ™) < |lw*|||lwTT]|. We plug Equations 4
and 5 to obtain:
S w7 (@) — ¢" (") < 2RVT|lw*|| + S '
Now we use the a-informativity assumption (Eq 1) and the
definition of average regret (Eq 2) to obtain the claim.

References

Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based Optimization and Utility Elicitation
using the Minimax Decision Criterion. Artifical Intelligence
170:686-713.

Chajewska, U.; Koller, D.; and Parr, R. 2000. Making ratio-
nal decisions using adaptive utility elicitation. In Proceed-
ings of AAAI’00, 363-369.

Chen, L., and Pu, P. 2012. Critiquing-based recommenders:
survey and emerging trends. User Modeling and User-
Adapted Interaction 22(1-2).

Faltings, B.; Pu, P.; Torrens, M.; and Viappiani, P. 2004.
Designing example-critiquing interaction. In ACM IUI'04,
22-29.

Goetschalckx, R.; Fern, A.; and Tadepalli, P. 2014. Coactive
learning for locally optimal problem solving. In AAAI’14.

Goetschalckx, R.; Fern, A.; and Tadepalli, P. 2015. Multi-
task coactive learning. In IJCAI’15, 3518-3524.

Goldsmith, J., and Junker, U. 2009. Preference handling for
artificial intelligence. AI Magazine 29(4).

Grasch, P; Felfernig, A.; and Reinfrank, F. 2013.
Recomment: Towards critiquing-based recommendation
with speech interaction. In RecSys’13, 157-164.

Guo, S., and Sanner, S. 2010. Real-time multiattribute
bayesian preference elicitation with pairwise comparison
queries. In Proceedings of AISTAT’ 10, 289-296.

Keeney, R. L., and Raiffa, H. 1976. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs.

McGinty, L., and Reilly, J. 2011. On the evolution of
critiquing recommenders. In Recommender Systems Hand-
book. 419-453.

Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. Minizinc: Towards a standard cp
modelling language. In CP’07.

Payne, J. W.; Bettman, J. R.; and Johnson, E. J. 1993. The
adaptive decision maker.

Pu, P,, and Faltings, B. 2000. Enriching buyers’ experiences:
the smartclient approach. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, 289—
296.

Rosenblatt, F. 1958. The perceptron: a probabilistic model
for information storage and organization in the brain. Psy-
chological review 65(6):386.

Shivaswamy, P., and Joachims, T. 2012. Online structured
prediction via coactive learning. In ICML’12.

Shivaswamy, P., and Joachims, T. 2015. Coactive learning.
JAIR 53(1).

Slovic, P. 1995. The construction of preference. American
psychologist 50(5):364.

Sokolov, A.; Riezler, S.; and Cohen, S. B. 2015. A coactive
learning view of online structured prediction in statistical
machine translation. CoNLL’15 1.

Teso, S.; Passerini, A.; and Viappiani, P. 2016. Constructive

preference elicitation by setwise max-margin learning. In
LICAI'l6.

2645

Tou, F. N.; Williams, M. D.; Fikes, R.; Henderson, A.; and
Malone, T. 1982. Rabbit: an intelligent database assistant.
In AAAI'S2.

Viappiani, P., and Boutilier, C. 2009. Regret-based optimal
recommendation sets in conversational recommender sys-
tems. In RecSys’09, 101-108.

Viappiani, P, and Boutilier, C. 2010. Optimal bayesian
recommendation sets and myopically optimal choice query
sets. In Proceedings of NIPS’10, 2352-2360.

Viappiani, P.; Pu, P.;; and Faltings, B. 2007. Conversational
recommenders with adaptive suggestions. In RecSys’07, 89—
96.

Zhang, J., and Pu, P. 2006. A comparative study of com-
pound critique generation in conversational recommender
systems. In International Conference on Adaptive Hyper-
media and Adaptive Web-Based Systems, 234-243.

